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Traditional ELISAs are frequently used to 

detect and quantify specific analytes within 

a biological sample. These samples include 

serum, plasma, cell culture supernatants, 

and other biological matrices. In order to 

determine the concentration of an analyte 

within a sample, one must run a standard or 

calibration curve. The production of a 

standard curve requires the use of known 

concentrations of the analyte being assayed. 

Performing a quantitative immunoassay 

asks one, to plot an x-y plot, that shows the 

relationship between this standard (analyte 

of interest) with the readout of the assay, 

e.g., optical density (OD) for ELISA. The 

concentration of the analyte in the sample 

can then be calculated using the OD from 

the standard curve. 

Before samples can be analysed, it is 

important to choose the best curve fit model 

to achieve the most accurate and reliable 

results. 

 
▪ Different Elisa standard curves: 

• Linear Regression: 

Linear regression is the easiest regression 

model and is the basic regression analytical 

method for curve fitting. 

 

Figure 1. Fitting function equation: y=a+bx 

The concentration is generally represented 

as x, the assay readout(OD) as y, with b 

referring to the slope and a referring to the 

y-intercept where x = 0. 

The aim is to find values for the 

slope (b) and y-intercept (a) that minimize 

the absolute distance from the data point to 

the curve, also known as the “residual”. 

 

Figure 2. 

The ideal assumption is that the best-fit 

linear curve will be a line that passes as 

close as possible to all data points from the 

standard curve. The question that arises 

from this is, "How is this assessed?" This is 

where the concept of a 'residual' is 

introduced. Since the best fit line will be the 

one that passes closest to all data points, it 

should seem natural that we could simply 

sum the residuals of all data points and the 

line with the lowest sum would be the best. 

However, there is an underlying problem 

here that needs to be addressed. Take an 

over-simplified example where we are 

looking at residuals from just 2 data points, 

A & B. Now, imagine we fit 2 linear curves 

to the data. The first gives residuals of A = 

1 and B = 9, and the second gives A = 5 and 

B = 5. If we sum the residuals, both curves 

give the same answer of 10. This is 

problematic since mathematically they are 
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"equivalent", but clearly the second curve 

fits the data better as it passes closer to both 

data points. More simply put, 5 for each is 

a better fit than 1 and 9. 

The solution to this issue is to 

square the residual values first, and then 

add them together. By transforming the data 

like this, curves with poorer fits and larger 

residuals will be scored higher and become 

less desirable. To revisit the example from 

above, 52 + 52 = 50, and 12 + 92 = 82. Rather 

than being mathematically equivalent, now 

the better fit curve has the lower sum of 

squared residuals. 

 
• Non Linear Curves:- 

 Quadratic Polynomial Regression Equa - 

tion: 

Quadratic polynomial is shown in the form 

of parabola which opens upward or 

downward. In many ELISA tests, either 

ascending or descending order of quadratic 

polynomial is fitted. Due to features of the 

curve, the same concentration value may 

differently appear in the curve: no relevant 

OD value, one OD value, or two OD values. 

Thus, when using quadratic polynomial for 

fitting, the range of selected value should 

entirely fall in the ascending or descending 

curve. Otherwise, the good correlation 

coefficient is probably inconsistent with the 

actual value. 

 
 Cubic Polynomial Regression Equation: 

Cubic polynomial is presented in inverted 

"s-shape". If the test result just falls in the 

ascending or descending curve, the effect is 

good. However, if the value range is wide, 

due to the fluctuation of the curvature, the 

simulation of cubic polynomial may not be 

good. 

 

Figure 3. Fitting function equation: y = a + b x + c 2 

Like quadratic equations, both the 

correlation coefficient of the curve and the 

distribution of calculated points should be 

concerned. Then, the ideal result can be 

obtained. During calculating values with 

the software, selectively choose relative 

concentration or OD value and list the result 

corresponding with original OD. 
 

Figure 4. Fitting function equation: y = a + b x + c2 

+ d3 

 

 

 Semilogarithmic Regression Equation: 

Semilogarithmic fitting refers to take 

logarithm of concentration value and make 

linear regression in appropriate OD value. 

The ideal result is a line under semi log 



3 Biochem. Chron. June  

coordination, showing concentration 

logarithmically increases or decreases with 

the related variation of OD values. In other 

words, the change of concentration is 

stronger than the variation of OD values. 

Semilogarithmic fitting is used in ELISA 

test (Semi logarithm is also used for 

drawing in EXCEL). 

 

Figure 5. Fitting function equation: y = a lg(x) + b 

 

 

 Log-Log Regression Equation: 

Log-Log fitting is similar with 

semilogarithmic fitting. OD values and 

relevant concentration values are made by 

the linear regression and log-log curve is 

drawn. 

 

Figure 6. Fitting function equation: lg(y) = a lg(x) 

+ b 

 

 

 4-Parameter Logistic (4PL): 

Immunoassay standard curves typically 

produce an S-shaped sigmoidal curve, 

which requires a different kind of 

mathematical modelling called logistic 

regression, that allows for curve fitting 

beyond the linear range of the curve. This 

new range is referred to as the logistic 

range, and is most simply described by a 

4PL curve. This type of modelling still uses 

the underlying concept of summing the 

square of the residuals, but instead of 

minimizing residuals for a straight line, 

we're now doing so with an S-shaped curve 

that is defined by the following parameters. 

 

Figure 7 
 

 
 

 

Figure 8 
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his type of analysis uses an equation that 

has a maximum and minimum incurporat - 

ed into it, and 4 parameters, hence the 

name. If your data produces a symmetrical, 

S-shaped curve, a 4PL fit should be 

sufficient to analyse your data. 

 
 5-Parameter Logistic (5PL): 

At times when running an ELISA, or more 

complex multiplexing assays such as 

LEGEND plex™, you may not get a pretty, 

symmetrical curve. What do you do then? 

There is an additional parameter that can be 

added to the 4PL equation, thus allowing 

one to do a 5PL curve fit. This fifth 

parameter takes into account an asymmetry 

factor, g, and provides a better fit when the 

curve does not have symmetry. 

For asymmetric calibration curves (Figure 

2), a 5-PL regression analysis may give a 

better fit, because the regression equation 

takes into account the asymmetry with an 

additional parameter g: 

 

 

Figure 9: Above 

Figure 10: Below: Examples of asymmetric 

immunoassay curves which may require 

5-PL regression analysis 
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▪ How Well Does my Model Fit the Data? 

The answer to this question is essential for 

generating high quality data. For linear 

regression   analysis  the  regression 

coefficient R is most commonly used to 

describe the goodness of fit. For non-linear 

regression models, the evaluation is slightly 

more complex  and  requires the 

investigation of residual variances over the 

calibration  range.  There   are several 

practical ways to determine the goodness of 

fit without  the need of   sophisticated 

statistical software,   two  of them are 

presented here. 

▪ Residual Sum of Squares (RSS) Method: 

This method calculates the distance of the 

computed response (y-value) based on the 

chosen regression model from the measured 

response value at each concentration x. The 

Sum of Squares (SS) is calculated 

according to the following equation: 

 

 
A lower RSS value indicates a better fit. 

▪ Recovery of Calibration Standards: 

This method investigates the accuracy of 

the observed concentration calculated by 

the curve-fitting model for each calibrator 

concentration (expected value). The 

recovery for each concentration x is 

calculated according to this formula: 

 

The closer the recovery is to 100%, 

the better is the applied regression model. 

For accurate quantification, recovery values 

should be within 80 – 120%. 

 
▪ Weighting in Curve-Fitting Models: 

Unweighted   4-PL  or 5-PL regression 

models assume equal response variance 

across all  protein   standards 

(‘homoscedasticity’).       However, 

immunoassays usually  show   unequal 

variances (‘heteroscedasticity’) across the 

calibration  range.   The   variability in 

response and thus the measurement error 

usually increases with higher response 

values, and at lower protein concentrations 

small changes in response have a larger 

effect on accurate determination of protein 

concentration. Thus, weighting algorithms 

are often used to offset these effects which 

eventually leads to the optimization of the 

curve-fitting model. One way of adjusting 

the weight is to use the reciprocal of the 

variance. By doing so, standards with high 

variance will have less weight on the 

calibration function, while standards with 

low variance will have more weight. 

Weighting in curve-fitting models requires 

statistical software tools and we refer to the 

respective instruction manuals for detailed 

information. 

In our Institution (Medical College 

Kolkata), we execute this procedure in 

MAGELLAN software which helps us to 

interpret the best fit curve. 
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